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Abstract: Accurate high-resolution precipitation forecasts are critical yet challenging for weather
prediction under complex topography or severe synoptic forcing. Data fusion and assimilation
aimed at improving model forecasts, as one possible approach, has gained increasing attention in
past decades. This study investigates the influence of the observations from a C-band Doppler
radar over the west coast of Sumatra on high-resolution numerical simulations of precipitation
around its vicinity under the Madden–Julian oscillation (MJO) in January and February 2018. Cases
during various MJO phases were selected for simulations with an advanced research version of the
weather research and forecasting (WRF) model at a cloud-permitting scale (~3 km). A 3-dimensional
variational (3DVAR) data assimilation method and a hybrid three-dimensional ensemble–variational
data assimilation (3DEnVAR) method, based on the NCEP Gridpoint Statistical Interpolation (GSI)
assimilation system, were used to assimilate the radar reflectivity and the radial velocity data.
The WRF-simulated precipitation was validated with the Integrated Multi-satellitE Retrievals for
GPM (IMERG) precipitation data, and the fractions skill score (FSS) was calculated in order to
evaluate the radar data impacts objectively. The results show improvements in the simulated
precipitation with hourly radar data assimilation 6 h prior to the simulations. The modifications with
assimilation were validated through the observation departure and moist convection. It was found
that forecast improvements are relatively significant when precipitation is more related to local-scale
convection but rather small when the background westerly wind is strong under the MJO active
phase. The additional simulation experiments, under a 1- or 2-day assimilation cycle, indicate better
improvements in the precipitation simulation with 3DEnVAR radar assimilation than those with the
3DVAR method.

Keywords: radar observations; data assimilation; high-resolution simulation; precipitation

1. Introduction

The Maritime Continent (MC), which includes islands of various sizes, forms, and ter-
rain types [1], lies along the equator between the Indian Ocean and the Pacific Ocean, with
a zonal width of more than 5000 km [2]. Many studies have shown the MC’s essential role
in the global weather-climate continuum [3–6]. For instance, the Madden–Julian oscillation
(MJO) [7,8], a significant fluctuation in tropical weather, can interact with the MC on weekly
to monthly timescales. MJO’s large-scale tropical disturbance usually propagates eastward
at a speed of approximately 5 m s−1, with a typical zonal extent of roughly 12,000–20,000 km
and a period of 30–90 days [9]. Therefore, an MJO passing the MC or being blocked by
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the MC could have noticeable impacts on MC local weather, including the local rainfall.
Significant modulations of the spatial and temporal distribution of precipitation have been
found in many studies [10–14]. The different MJO phases indicate various locations of
convection-favoring disturbance. Therefore, understanding MC weather characteristics
during these phases has been an essential research topic. Accurate simulations of MC
convection and precipitation by numerical models are challenging, due to complex terrain
and surface features, coarse model resolutions, and deficiencies in model physics [15–18].
Furthermore, with sparse in situ observations over western Sumatra, accurate numerical
weather prediction must rely largely on appropriate analysis and initial conditions.

High-resolution precipitation forecasts are an essential part of accurate weather and
climate prediction under complex topography or severe synoptic forcing. Data assimilation
is a method used to achieve an optimal combination of short-range forecasts and observa-
tions. It has received increasing attention during the past decade as a useful method to help
to improve high-resolution precipitation forecasts. Besides conventional data assimilation,
which is widely used in model forecasts in many regions, radar data assimilation has been
developed simultaneously in recent years. Based on the investigation of a well-documented
supercell storm that occurred near Del City, Oklahoma, Gao and Stensrud [19] explored
the impact of assimilating radar reflectivity and radial velocity data with a 3DVAR system.
Lat et al. [20] introduced an improved approach to derive a pseudo-water vapor mass
mixing ratio and in-cloud potential temperature in southern China. Radhakrishnan and
Chandrasekar [21] blended a radar-based nowcast with a numerical weather prediction
(NWP) model over the Dallas–Fort Worth (DFW) urban radar network, aimed at improving
predictive ability with a 6-h lead time. However, there has been little progress over the MC
region, owing to the lack of radar data.

Based on the support of the Meteorology, Climatology, and Geophysical Agency
(BMKG), Indonesia, radar data are available for part of Sumatra. The International Years of
Maritime Continent (YMC) program provides an opportunity to widely study the impacts
of radar data assimilation on local weather forecasting through international collaboration.
This study aimed to conduct a series of experiments in order to investigate the impacts of the
assimilating data obtained from a single radar around Padang, a station in western Sumatra,
Indonesia, on the simulations of local-scale convection and precipitation. Considering
the influence of the MJO on weather conditions, we intend to understand the large-scale
conditions under which radar data can be useful for local weather forecasting. Therefore,
this paper attempts to examine the radar data assimilation under different phases of an
MJO event from November 2017 to February 2018 [22]. The convective disturbance passed
over Padang from the middle to the end of January.

The rest of the paper is organized as follows: Section 2 introduces the numerical sim-
ulation experiments, the data assimilation configuration, and the precipitation verification
method; Section 3 presents all of the results, including the convection description, precipitation
verification, assimilation impacts, and the synoptic background analysis; Section 4 gives a
discussion with existing literature; Section 5 summarizes all of the concluding remarks.

2. Cases and Model Set-Up
2.1. Case Durations

An RMM phase diagram describing the MJO event based on the method proposed by
Wheeler and Hendon [23] is presented in Figure 1, with data provided by the Australian
Bureau of Meteorology.
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Figure 1. MJO RMM phase diagram for January (blue)–February (green) 2018 with locations of the 
4 6-h cases attached. 

The four representative convective cases were selected based on the availability of 
radar data, each with a time span of 6 h. The durations and corresponding MJO phases 
for these cases are as follows: 1500 UTC 7 January–2100 UTC 7 January in phase 2 (Case 
1), 0000 UTC 24 January–0600 UTC 24 January in phase 5 (Case 2), 2100 UTC 11 February–
0300 UTC 12 February in phase 7 (Case 3), and 1800 UTC 22 February–0000 UTC 23 Feb-
ruary in phase 1 (Case 4), as marked in Figure 1. According to the partitioning of the MJO 
life cycle mentioned by Wei et al. [24], Case 1 is in the MC preconditioning stage, Case 2 
is in the MC active stage, and Cases 3 and 4 are in the MC suppressed stage. The MJO 
amplitude during each case is always larger than one, revealing non-negligible modula-
tions of the MJO on the large-scale synoptic background. Most of this paper focuses on 
simulations within 6 h, since previous literature has shown that the impacts of radar data 
assimilation are most apparent within short-term (usually up to 6 h) forecasts [25–29]. 

A summary of the case durations is presented in Table 1, including the starting and 
ending times of simulations after data assimilation. Note that an additional case, Case 5, 
from 1200 UTC 11 February to 0000 UTC 13 February was added as an extension of Case 
3. While hourly radar data assimilation was conducted before the 6-h simulations in Cases 
1–4, the purpose of Case 5 was to verify the impacts of 6-hourly data assimilation before 
and during the 36-h simulations, where apparent short-term impacts from radar data as-
similation could be refreshed every 6 h throughout the modeling period. 

  

Figure 1. MJO RMM phase diagram for January (blue)–February (green) 2018 with locations of the 4
6-h cases attached.

The four representative convective cases were selected based on the availability of
radar data, each with a time span of 6 h. The durations and corresponding MJO phases for
these cases are as follows: 1500 UTC 7 January–2100 UTC 7 January in phase 2 (Case 1),
0000 UTC 24 January–0600 UTC 24 January in phase 5 (Case 2), 2100 UTC 11 February–0300
UTC 12 February in phase 7 (Case 3), and 1800 UTC 22 February–0000 UTC 23 February in
phase 1 (Case 4), as marked in Figure 1. According to the partitioning of the MJO life cycle
mentioned by Wei et al. [24], Case 1 is in the MC preconditioning stage, Case 2 is in the MC
active stage, and Cases 3 and 4 are in the MC suppressed stage. The MJO amplitude during
each case is always larger than one, revealing non-negligible modulations of the MJO on
the large-scale synoptic background. Most of this paper focuses on simulations within 6 h,
since previous literature has shown that the impacts of radar data assimilation are most
apparent within short-term (usually up to 6 h) forecasts [25–29].

A summary of the case durations is presented in Table 1, including the starting and
ending times of simulations after data assimilation. Note that an additional case, Case
5, from 1200 UTC 11 February to 0000 UTC 13 February was added as an extension of
Case 3. While hourly radar data assimilation was conducted before the 6-h simulations in
Cases 1–4, the purpose of Case 5 was to verify the impacts of 6-hourly data assimilation
before and during the 36-h simulations, where apparent short-term impacts from radar
data assimilation could be refreshed every 6 h throughout the modeling period.
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Table 1. Durations of different cases and configurations of radar data assimilation.

Case Configuration Assimilation:
General Configuration

Assimilation:
Super-ob Configuration

Case
Number Starting Time Ending Time Spin-Up Duration

Half
Time

Window

Azimuth
Angle

Interval

Elevation
Angle

Interval

Radial
Distance
Interval

Observation
Density

Threshold

Case 1 1500 UTC
7 January 2018

2100 UTC
7 January 2018 −15

h~−03 h
−03 h~00 h

hourly 0.5 h 5◦ 0.25◦ 5 km 30Case 2 0000 UTC
24 January 2018

0600 UTC
24 January 2018

Case 3 2100 UTC
11 February 2018

0300 UTC
12 February 2018

Case 4 1800 UTC
22 February 2018

0000 UTC
23 February 2018

Case 5 1200 UTC
11 February 2018

0000 UTC
13 February 2018

−24
h~−12 h

−12 h~30 h
6-hourly 1 h

2.2. WRF Model Configuration

An advanced research version of the weather research and forecasting (WRF) model
version 4.0 [30] was employed in order to conduct the numerical simulations with radar
data assimilation. The NCEP-FNL 0.25◦ × 0.25◦ global tropospheric analysis data [31] were
utilized as initial conditions and 3-hourly lateral boundaries during the simulations. A
single domain was configured in the WRF model, with a horizontal resolution of 3 km
and a grid span of 1080 × 720, covering all of Sumatra and the surrounding ocean. The
topography within the domain is shown in Figure 2. A total of 40 vertical layers were
configured, with the model top at 50 hPa.
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Figure 2. Terrain height (m) in the WRF domain. The black cross and red circle mark the Padang radar
location and data coverage. The orange dots mark the ISD sites Tabing (0.9◦S, 100.4◦E) and Japura
Airport (0.4◦S, 102.3◦E). The solid black box marks the transect used for the Hovmöller diagrams
(Figures 10–12).

For the physical scheme configuration, the tropical suite set that was predefined in
WRF, and that has performed well in tropical areas, was applied, as follows: the WRF
single-moment 6-class graupel scheme [32] with ice, snow, and graupel processes suitable
for the microphysics option in high-resolution simulations, the RRTMG scheme [33] for the
longwave/shortwave radiation option, the Yonsei University scheme [34] for the boundary-
layer option, the MM5 scheme [35] for the surface-layer option, and the Unified Noah
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land-surface model [36] for the land-surface option. The default tropical suite configured
the parameterized convection utilizing the new Tiedtke scheme [37], while among all of the
simulations in this study, the explicit convection, rather than the parameterized convection,
was configured under the cloud-permitting horizontal resolution of 3 km.

2.3. Radar Data and GSI Assimilation System

The reflectivity and radial velocity data from a ground-based C-band Doppler radar
over Padang, Indonesia, had a spatial coverage shown by the red circle in Figure 2 (where
the black cross indicates the radar’s location). The resolution was 1 km horizontally
and 0.5 km vertically, within a horizontal measurement range of 250 km and a vertical
measurement range of 12.5 km. The steep topography to the east of the radar blocked the
lowest elevation angles, and quality control was conducted to remove the topography-
affected data.

The community Gridpoint Statistical Interpolation (GSI) system [38] was applied for
the radar data assimilation in this study. The following two assimilation methods were
selected: the 3-dimensional variational (3DVAR) [39] method for all cases, and the hybrid
EnKF–3DVAR (3DEnVAR) method [40], combining the 3DVAR and ensemble Kalman filter
(EnKF) method, for Case 5 only.

The cost function in the 3DVAR assimilation method is as follows:

J(x) =
1
2
(x− xb)

T B−1(x− xb) +
1
2
(y− H[x])T R−1(y− H[x]) (1)

where x is the analysis field, xb is the background field, B is the background-error covariance
matrix, H is the observation operator, y is the observation field, and R is the observation-
error covariance matrix. The minimization of the cost function generates the result for data
assimilation. The background-error covariance plays an important role in determining how
the information from the observations is spread to nearby grid points and levels [41]. In
GSI, the static regional background-error covariance for 3DVAR is obtained through the
interpolation of NCEP’s NAM model forecasts onto background grids.

In the 3DEnVAR method, the forecast error covariance (equivalent to B in Equation (1))
is obtained from a linear combination of the 3DVAR covariance B3D−Var [42], as follows:

P f (hybrid) = (1− a)P f + aB3D−Var (2)

where a is a tunable parameter to determine the ratio of the impacts from 3DVAR and EnKF
(0.5 as equal weighting in this study), and P f is the estimate of the EnKF forecast error
covariance from the K forecasts x f

k (ti) after completing the ensemble of analyses at time
ti−1, as follows:

P f ≈ 1
K− 1

K

∑
k=1

(x f
k − x f )(x f

k − x f )
T

(3)

where the overbar represents the ensemble average. In this study, the NCEP GFS global
EnKF 80 ensemble members [43] helped to achieve the flow-dependent background-error
covariance, weighting the background forecasts and observations more appropriately [44].

The GSI system automatically interpolated the radar reflectivity horizontally and
vertically to match the grids in the WRF simulations. After radar reflectivity interpolation
and assimilation, the cloud analysis option was turned on in GSI with the input of the
cloud water, cloud ice, rain, snow, and graupel as first-guess. The procedure within GSI
introduced by Hu et al. [45] combines the strengths of early-developed semi-empirical
cloud analysis packages. Ingestion of background fields and observations is followed by
stable/convective cloud analysis.

For the radial velocity assimilation, the GSI system applied a super-ob process devel-
oped by Purser et al. [46], in which the radial velocity data available within a given time
window, for example, no more than 0.5 h sooner or later than the assimilation timestamp,
were separated and included within different boxes with a coarser spatial resolution, and
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then averaged within each super-ob box. This process helps to reduce the redundant
information and the data density and is aimed at better fitting data assimilation systems
and forecasting models [47]. The parameter configurations during the super-ob process
are also summarized in Table 1. The minimum number of observations in a super-ob box,
namely the observation density threshold, was set at 30 according to comparisons of model
behaviors against different density thresholds in this study. Any observations with a lower
density in each box were not used for assimilation.

2.4. Experiment Design and Verification

Figure 3 describes the spin-up periods, data assimilation cycles, and case simulations,
where the FNL data always provided the initial and boundary conditions (IC and BC). In the
control (CTL) experiment in Cases 1–4, instead of conducting a freely running simulation,
we assimilated the NCEP ADP global upper-air and surface weather observations [48]
(namely, the conventional data) in a 3-h assimilation window after a 12-h spin-up. For the
3DVAR experiments (3DV), available radar data within this assimilation window were
additionally integrated. Taking Case 1 (1500 UTC 7 January~2100 UTC 7 January) as an
example, in the CTL experiment, the 12-h spin-up lasted from 0000 UTC 7 to 1200 UTC
7, and then available conventional data were assimilated from 1200 UTC to 1500 UTC,
followed by a 6-h simulation to be verified against IMERG precipitation data. In the 3DV
experiment, the hourly radar data assimilation was added from 1200 UTC to 1500 UTC.
Here, 00 h is defined as the beginning of the 6-h simulation, so the spin-up was from −15 h
to −03 h, while the conventional data and radar data were assimilated hourly from −03 h
to 00 h. The half time window is one of the adjustable parameters for data ingestion and
assimilation in the GSI assimilation system. For the experiments in Cases 1–4, the default
value of 0.5 h was applied, which means that all of the conventional data or radar data
available with a temporal difference of no more than 0.5 h from the assimilation timestamp
were used.
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In Case 5, spin-up lasted from −24 h to −12 h, while the 6-hourly data assimilation in
CTL, 3DV, and the hybrid 3DEnVAR (HYB) followed at −12 h, −06 h, and 00 h, as revealed
in Figure 3. In contrast to Cases 1–4, where assimilation was conducted only before the
verification period, assimilation in Case 5 also occurred throughout the 36-h simulation,
with an interval of 6 h, so the apparent short-term impacts from assimilation covered the
whole simulation period. For the assimilation experiments in Case 5, the half time window
was modified to 1 h through sensitivity tests that indicated a slightly better performance
compared with those configured with the default 0.5 h.

The precipitation verification was emphasized in this study. The 0.1◦ × 0.1◦ half-hourly
Integrated Multi-satellitE Retrievals for GPM (IMERG) [49] V06B final run precipitation
products [50] produced by NASA were employed to validate the model-produced pre-
cipitation, which was horizontally interpolated onto IMERG grids using inverse distance
weighting. To objectively assess the quantitative precipitation forecast (QPF) skill among
the different cases and experiments, a scale-selective verification introduced by Roberts
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and Lean [51] was applied in order to calculate the fractions skill score (FSS) under various
thresholds and neighborhood lengths, as follows:

FSS(n,p) = 1−
∑Nx

i=1 ∑
Ny
j=1

[
O(n,p)i,j −M(n,p)i,j

]2

∑Nx
i=1 ∑

Ny
j=1

[
O2
(n,p)i,j + M2

(n,p)i,j

] (4)

where Nx and Ny are the total number of columns and rows in the whole field to be verified.
Given neighborhood length n and threshold p, the variable O is the fraction of observation
grids with values exceeding threshold p (recognized as a “hit”) within a total of n × n
observation grids centered at column i and row j, while M is the fractional variable for
the simulation grids. The calculated FSS represents the averaged behaviors against the
different thresholds, at different locations, and within different ranges, and it showed a
higher tolerance to location shifts commonly noticeable in high-resolution simulations,
which can suffer a greater punishment through traditional point-to-point skill scores and
can reflect high-resolution performance more objectively. In this study, neighborhood
length n ranged up to 100 km, approximately 10 times the IMERG grid resolution of 0.1◦,
indicating that a location shift of ±5 grids was recognized as a hit prediction.

The integrated surface database (ISD) [52] produced by the National Centers for
Environmental Information (NCEI) was additionally included for in situ precipitation
measurements. Two Indonesian sites, Tabing (0.9◦S, 100.4◦E) and Japura Airport (0.4◦S,
102.3◦E), were available within the study area, as marked in Figure 2. During the 5 cases in
this paper, there were very few ISD samples at the two sites, making a direct validation of
the WRF simulations nearly impossible. Instead, validation of the IMERG data was carried
out by horizontal interpolation onto those sites during all of January and February 2018,
covering all cases. A high correlation with the ISD data was expected to confirm the good
quality of the IMERG data and to make the conclusions from the model assessments more
convincing, as judged by the statistics of bias (BIAS), root mean square error (RMSE), and
Pearson correlation coefficient (PCC), calculated as follows:

BIAS =
∑n

i=1(yi − xi)

n
(5)

RMSE =

√
∑n

i=1(yi − xi)
2

n
(6)

PCC =
∑n

i=1(yi − y)(xi − x)√
∑n

i=1(yi − y)2 ∑n
i=1(xi − x)2

(7)

where x and y are the ISD and IMERG precipitation samples (mm h−1) with a total number
n and corresponding averages x and y.

3. Results
3.1. Convection Description

Figure 4 shows the spatial distribution of Padang radar reflectivity and IMERG precip-
itation rate during 01 h–06 h in Cases 1–4. Convective bands were available around the
western coast in Case 1, and MJO phase 2 (P2) occurred during the MC preconditioning
stage. At 01 h, precipitation formed to the east of the Barisan mountains along the western
coast, and seaward migration took place from 03 h to 05 h both near Padang and to the
north. The patterns in Case 2 under MJO P5 were the opposite, as follows: the convective
bands accumulated near the coast and land until 03 h, but the migration afterwards was
slightly eastward and landside precipitation formed at 06 h. The landward migration
during an MC active phase was also revealed by Yokoi et al. [53]. In Case 3, the convection
and precipitation under MJO P7 were much weaker than in Cases 1 and 2. The convective
cells were generated near the western coast and spread seaward, likely caused by factors
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such as cold land surges or gravity waves. The exact mechanism was not investigated in
this study, but it remains an interesting topic for future study. Case 4 occurred during MJO
P1 (the MC suppressed stage) and is the case with the heaviest convection and precipitation
as well as obscured migration, which might arise from a strong synoptic background, such
as strengthened low-level westerly wind and convergence.
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3.2. Precipitation Verification

Figure 5 compares the hourly precipitation rate at Tabing and Japura Airport from
the ISD measurements and from IMERG interpolations during January and February 2018.
The PCC was estimated at 0.73 and 0.63, respectively, both significant at the 0.01 level
according to the Student′s t-test, reflecting a moderate to high correlation between the ISD
and the IMERG data. The BIAS was −0.75 mm h−1 and 0.15 mm h−1, while the RMSE was
4.18 mm h−1 and 2.20 mm h−1. Despite the few ISD samples available for model validation
during each case included in this study, the comparison with IMERG samples suggests that
the model validation against the IMERG data should generally be valuable.

Figure 6 shows the accumulated precipitation from IMERG and WRF in Cases 1–4.
The two precipitation zones lie across the west coast in Case 1, one near Padang and the
other to the north, consistent with the migration in Figure 4. The CTL underestimation in
the north was largely reduced in 3DV. The mountain precipitation near Padang in IMERG
was not well reproduced even after assimilation; instead, it occurred farther offshore and
caused coastal overestimation in 3DV. Despite that, the total precipitation quantity around
Padang was still closer to IMERG.
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In Case 2 the CTL simulation performed well in spatial patterns and quantities, proba-
bly because the precipitation was modulated mostly by large-scale synoptic backgrounds
in order to ensure the simulation was not ruined by poor response to coastal topography.
The 3DV impacts on the spatial distribution were neutral, partly due to the difficulty of
further improving the model behaviors that were fine in CTL. There was an issue in Case 2,
in that WRF significantly underestimated coastal precipitation, while neither conducting
radar data assimilation nor increasing the model′s vertical levels from 40 to 60, noticeably
improving the behaviors. The two-way nesting was configured with an outer domain as
coarse as 9 km in the surroundings, with a finer (3 km) inner domain covering the area
of radar data. That configuration was considered a possible reason for the poor model
behaviors. Further investigation should be done in the future with this case, as the ini-
tial conditions (data assimilation) were not the major influencing factor. Rather, physical
processes may play a more important role here.

The CTL experiment exhibited a slight overestimation in the seaside and landside
areas in Case 3, which was somewhat reduced in the 3DV experiment. Relative to Cases
1 and 2, improvements in the precipitation simulation with assimilation in Case 3 were
weaker, probably arising from weaker convection with a lower rain rate and fewer samples
in Case 3 (Figure 4). In contrast, during the heavy precipitation of Case 4 with large areas
of convection, the radar captured abundant precipitation samples (Figure 3), which was
conducive to good simulations of the two precipitation centers around Siberut in the 3DV
experiment.

Figure 7 displays the FSS scores calculated from the CTL and 3DV experiments in
Cases 1–4 with the scale-selective verification method introduced in Section 2.4. The
range was calculated by multiplying the grid length (approximately 10 km for 0.1◦) by
the number of the neighborhood grid points, namely n in Equation (4). The maximum
threshold p was determined as the maximum accumulated precipitation within the whole
region during each case, and the minimum was set at 5 mm in Cases 1–3 and 30 mm in
the heavy precipitation case (Case 4). The CTL scores were higher in Cases 2 and 4, the
two cases without visible seaward migration of precipitation. The 3DV improvements
were noticeable in Cases 1, 3, and 4 but were minor in Case 2, consistent with the spatial
comparison (Figure 4). As described in Section 3.1, in Case 2 the precipitation migration
was slightly landward in the MC convective active stage of MJO, affected by the stronger
onshore background wind, which significantly enhanced vapor advection as the dominant
factor of precipitation. However, no radar data assimilation was conducted farther offshore
to modify this advection from the northern Indian Ocean, which is assumed to be a possible
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reason for the minor DA improvements in Case 2. Further discussion about synoptic impact
is given in Section 3.4.
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3.3. Modification Diagnosis

In order to analyze the modifications of precipitation simulations after radar DA, the
Padang radar reflectivity data were used to calculate observation departure from the CTL
and 3DV initial conditions at 00 h, namely, the O-B and O-A diagnostic fields. The 3DV
departure (O-A) is the accumulation of hourly modifications from −03 h to 00 h. The
composite radar reflectivity (the highest reflectivity at all of the elevations) observations
at 00 h in each case, together with the calculated O-B and O-A fields, are exhibited in
Figure 8. The topographic blocking from the coastal Barisan mountains was apparent, and
useful landside samples after data quality control were hardly available in Cases 2–4. The
decrease in coastal underestimation was noticeable in each case, in agreement with the 3DV
improvements of precipitation simulation.
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Figure 9 shows the relative humidity and vertical motion at 700 hPa and 500 hPa from
the CTL and 3DV experiments averaged in Cases 1–4, where the few radar data samples
around 850 hPa resulted in minor modifications of moist convection at the corresponding
height. In Case 1, the precipitation probably occurred at around 700 hPa, where the
convections had shapes which were consistent with precipitation. Stronger vertical motion
and higher humidity were favorable for increased precipitation, which was sustained
at the higher level of around 500 hPa. The increments of humidity and wind in the
mountainous areas hardly led to any apparent improvements in the precipitation prediction.
The enhancement of moisture and vertical transport was unidentifiable in Case 2, the case
with the least improvement in the precipitation simulation. The assimilation impacts
in Cases 3 and 4 were noticeable at 500 hPa, and their consistency with precipitation
improvements suggests that precipitation took place at higher levels than in Case 1. These
comparisons, with and without assimilation, indicate the positive influence of radar data
assimilation on moist convection and precipitation.
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3.4. Synoptic Analysis

In order to further analyze the differences among the cases in terms of CTL behaviors
and 3DV impacts, including the reason for the minor improvements in convection and
precipitation after assimilation in Case 2, we looked at the large-scale synoptic background.
Figure 10 shows the FNL coast-normal horizontal wind in the different cases. Low-level
onshore wind, as well as a coastal land surge, is visible in most cases. Note that the
offshore/onshore migration of precipitation is one of the diurnal features in MC coastal
regions, but the direction of migration is not always the same as the direction of the low-
level background wind, because other factors, such as gravity waves generated from the
land-sea contrast or local-scale convection, could also have impacts [53–56].

Cases 2 and 4 were under the control of a stronger low-level onshore wind from the
northern Indian Ocean, in contrast to Cases 1 and 3, where noticeable seaward migration
of precipitation was generated under a weaker onshore wind and a stronger land surge.
The WRF CTL simulations performed better in Cases 2 and 4, while poorer behavior in
Cases 1 and 3 reflects the difficulties in describing topographic influences on convection
and precipitation development, including seaside underestimation near the coastal Barisan
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mountains in Case 1, and overestimation around the mountains in Case 3. In other words,
the WRF model could reasonably reproduce convection under stronger large-scale synoptic
impacts, while its prediction of local-scale seaside convection and migration was easily
ruined by other local factors, such as the model’s poor response to topography.
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The observation departure (Figure 8) revealed visible seaside modifications of con-
vection at initial conditions after radar data assimilation in Cases 2 and 4. However, the
improvements of subsequent convection and precipitation from 3DV were apparently
minor in Case 2. A possible explanation is the strong dilution of synoptic forcing. Under
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the background of an MJO active phase, the onshore wind was strongest in Case 2 and
dominated from the surface to around 600 hPa. The strengthened landside advection
and deep convection, as the main factor of precipitation in this case, easily overlapped
the modifications from the data assimilation. This is distinguished from Case 4 where
local-scale middle-level land surge and convection also largely modulated the precipitation,
creating more favorable conditions for the assimilation effects to be sustained. On the other
hand, no radar data assimilation was conducted farther offshore to modify the simulation
of strengthened vapor advection from the northern Indian Ocean, as the dominant factor of
precipitation in Case 2. Therefore, under strong large-scale forcing, such as an MJO active
phase, assimilation of upper-stream observation is necessary to predict deep convection
and heavy precipitation downstream.

The low-level synoptic features in Cases 1 and 3 reflected weaker impacts from seaside
advection and stronger impacts from the local-scale land surge and convection; mean-
while, the 3DV improvements of the seaside precipitation prediction were more noticeable
than in Case 2, reflecting a better influence of assimilation under a weaker large-scale
synoptic background. The landside improvements under the unfavorable condition of few
landside radar samples were noticeable, indicating that DA improvements could extend
upstream and enhance the WRF model’s response to coastal topography. The abundant
radar samples in Case 4 reflected stronger convection in a larger area compared with other
cases; meanwhile the background westerly wind was not so strong as to heavily dilute the
assimilation modifications. Therefore, the improvement in the precipitation simulation in
Case 4 is outstanding.

3.5. Comparison between 3DVAR and 3DEnVAR Experiment

Besides the 4 short-term cases with hourly radar data assimilation from −03 h to 00 h
before simulation, a longer period containing the duration of Case 3 was investigated,
designated as Case 5, as indicated in Table 1. This case was controlled by a noticeable
low-level land surge and local-scale convection (Figure 10), which was favorable for the
sustained impacts of radar data assimilation. The forecasts in Case 5, using both the 3DV
and HYB assimilation method, were validated and analyzed.

Figure 11 displays the hourly precipitation rates from the IMERG data and different
WRF experiments. The seaward migration at the former 18 h and latter 18 h was revealed
in IMERG, while the CTL simulation overestimated the former and underestimated the
latter. In the CTL experiment, precipitation was generally overestimated during the 1st
migration, especially at 09 h~15 h, and the underestimation during the 2nd migration
was most noticeable at 27 h~33 h. Both the 3DV and HYB experiments reduced the CTL
overestimation in the 1st migration, where the reduction in 3DV was slightly higher. The
differences between 3DV and HYB came largely from the 2nd migration, which was very
obscured in 3DV but was nicely caught in HYB, with an enhanced performance at 27 h~33 h
compared with CTL.

The diagnostic fields of low-level moist convection are compared through differences
in 850-hPa convergence and relative humidity in the 3DV and HYB experiments from those
in the CTL experiment (Figure 12). As shown in the latter half of the 3DV experiment,
weakened seaside convergence and humidity were unfavorable for vertical vapor transport,
related to the obscured seaward migration. This phenomenon probably arose from the
weakened landside convection and humidity during the earliest hours, aimed at reducing
the overprediction of landside precipitation. However, as shown in Figure 11, in the CTL
experiment the landside convection also moved seaward and triggered coastal convection
during the latter half of the case, under the control of easterly land surges (Figure 10).
Therefore, in the 3DV experiment, the severe cut in initial landside convection and the
associated vertical vapor transport accumulated progressively and gradually influenced the
following seaward migration. On the other hand, the HYB modifications within the earliest
hours were relatively more neutral, and the reduction of moist convection afterward was
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not as severe as that in 3DV. As a result, the HYB experiment reasonably reproduced the
2nd migration of precipitation.
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In general, under a 1- or 2-day assimilation cycle and simulation, the HYB method
reached a better balance of positively influencing precipitation throughout the whole simu-
lation, reflecting its advantage of more properly weighting the simulations and observations.
Though further investigation with more cases is needed to prove whether this feature is
common, the findings still reveal the potential superiority of the HYB assimilation method
in leading to better model performance when hourly radar data assimilation is impossible
due to low temporal resolution and only 6-hourly assimilation can be conducted.
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4. Discussion

Numerous previous studies have revealed unsatisfying precipitation modeling in the
MC, with reasons including the following: less coherent convective response under coarser
model resolutions [55], a drier humidity reference profile in the parameterized cumulus
convection [57], a lowered predictability of MC convection via a phase bias [58], and a
potential dry bias within the input reanalysis data [59]. With respect to the analysis above,
in this study the explicitly resolved convection under the cloud-permitting model resolution
(3 km) instead of the parameterized convection, as well as conventional and radar data
assimilation, helped the WRF model to reproduce precipitation more reasonably (Figures 6
and 7). On the other hand, several data assimilation studies have focused on Sumatra, but
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they usually used radiosonde data [60,61] or satellite data [62,63]. Some other studies have
used radar reflectivity data in order to estimate precipitation rates through semi-theoretical
relationships [53,64,65], but few experiments assimilating radar data have been conducted
on Sumatra or even in the MC. Therefore, this study is expected to represent pilot research to
examine the influence of radar data assimilation on high-resolution numerical simulations
during different MJO stages over the MC region.

The improvements with radar data assimilation come largely from the modifications of
moisture conditions and wind structure [66–69], which are also revealed in this study. Note
that most of the CDR reflectivity samples obtained at Padang exceeded 15 dBZ, while other
samples generally within 15 dBZ were filtered off during the quality control. Gao et al. [70]
defined a limit of 5 dBZ as no-rain echoes and found its assimilation to further reduce the
bias and false alarm ratio of precipitation in the Colorado Rocky Mountains. Similar experi-
ments in our study region might be worthwhile, for example during Case 1, where coastal
underestimation north of Siberut island was turned into non-negligible overestimation
after radar DA. Further improvement in the no-rain reflectivity assimilation is expected
for WRF’s behavior in coastal topography, such as that of western Sumatra, and not only
during heavy precipitation (e.g., Case 4) where abundant radar data samples guarantee
the extent of DA impacts. In addition, during Case 5 the CTL experiment overestimated
coastal precipitation in the former half (Figure 11), where improvements from 3DV DA and
HYB DA were similar to each other (slightly better in 3DV). The main difference between
the two DA experiments occurred in the latter half, where the seaward migration of CTL
precipitation was hardly caught. The comparison supports the potential superiority of the
HYB method over the 3DV method in terms of properly weighting background fields and
observations, consistent with the findings of some previous research [40,69].

5. Conclusions

Based on the WRF model and the 3DVAR/hybrid 3DEnVAR method in the GSI data
assimilation system, the present work assimilated radar reflectivity and radial velocity data to
improve WRF’s initial conditions for high-resolution precipitation simulations during four 6-h
cases and a 36-h case under different phases of an MJO event during January–February 2018.
The radar data were obtained by a ground-based C-band Doppler radar located at Padang,
Indonesia, a station on the west coast of Sumatra. IMERG precipitation products were utilized
for the validation of the CTL, 3DVAR, and hybrid 3DEnVAR simulations. The modifications
from assimilation were analyzed via observation departure in GSI analysis and modifications
of convection properties. The major conclusions are summarized as follows:

Positive influences on 6-h precipitation simulations from the radar data assimilation
were commonly visible in the coastal region. The diagnostic fields of moist convection
were modified to reduce observation departures from the simulations. The radar data
assimilation noticeably improved local-scale convection and migration but hardly influ-
enced large-scale deep convection driven by a strong synoptic background, such as an MJO
active phase. Under a 1- or 2-day assimilation cycle and simulation, the hybrid 3DEnVAR
method reached a better balance of positively influencing precipitation throughout the
whole simulation, as an advantage over the 3DVAR method, which focused on the earliest
hours but found it difficult to catch the convection developments afterward.

Despite the results showing the positive impacts of radar data assimilation on the
numerical simulations, more work needs to be done in future studies. Since single-radar
observations have limited coverage, simulation improvements could be enhanced if mul-
tiple radar observations were available. Therefore, more studies using numerous radar
datasets with broader coverage are needed for more significant improvements in modeling
and further confirmation of current findings. Also, since this paper presents a pilot study to
examine the influences of radar data assimilation on high-resolution numerical simulations
over the MC region, more advanced remote-sensing data assimilation techniques should
be used, including applying the hybrid 3DEnVAR method more widely. In addition, the
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capability of high-resolution numerical models to catch the generation of local convection in
western Sumatra during different strong synoptic backgrounds still needs to be enhanced.
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